Picard constants of three-sheeted algebroid surfaces with $p(y)=5$
نویسندگان
چکیده
منابع مشابه
K3 surfaces with Picard number three and canonical vector heights
In this paper we construct the first known explicit family of K3 surfaces defined over the rationals that are proved to have geometric Picard number 3. This family is dense in one of the components of the moduli space of all polarized K3 surfaces with Picard number at least 3. We also use an example from this family to fill a gap in an earlier paper by the first author. In that paper, an argume...
متن کاملDynamical systems on infinitely sheeted Riemann surfaces
This paper is part of a program that aims to understand the connection between the emergence of chaotic behaviour in dynamical systems in relation with the multi-valuedness of the solutions as functions of complex time τ . In this work we consider a family of systems whose solutions can be expressed as the inversion of a single hyperelliptic integral. The associated Riemann surface R → C = {τ} ...
متن کاملCodes from surfaces with small Picard number
Extending work of M. Zarzar, we evaluate the potential of Goppa-type evaluation codes constructed from linear systems on projective algebraic surfaces with small Picard number. Putting this condition on the Picard number provides some control over the numbers of irreducible components of curves on the surface and hence over the minimum distance of the codes. We find that such surfaces do not au...
متن کاملCusps of Picard modular surfaces
We determine the number of cusps of minimal Picard modular surfaces. The proof also counts cusps of other Picard modular surfaces of arithmetic interest. Consequently, for each N > 0 there are finitely many commensurability classes of nonuniform arithmetic lattices in SU(2, 1) that contain an N -cusped surface. We also discuss a higher-rank analogue.
متن کاملVolumes of Picard modular surfaces
We show that the conjectural cusped complex hyperbolic 2-orbifolds of minimal volume are the two smallest arithmetic complex hyperbolic 2orbifolds. We then show that every arithmetic cusped complex hyperbolic 2-manifold of minimal volume covers one of these two orbifolds. We also give all minimal volume manifolds that simultaneously cover both minimal orbifolds.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kodai Mathematical Journal
سال: 2000
ISSN: 0386-5991
DOI: 10.2996/kmj/1138044214